RAPIDS

The Platform Inside and Out

RAPIDS

Data Processing Evolution

Faster data access, less data movement

Hadoop Processing, Reading from disk

Data Movement and Transformation

Data Movement and Transformation

What if we could keep data on the GPU?

Learning from Apache Arrow

- Each system has its own internal memory format
- 70-80% computation wasted on serialization and deserialization •
- Similar functionality implemented in multiple projects

- All systems utilize the same memory format
- No overhead for cross-system communication
- Projects can share functionality (eg, Parquet-to-Arrow reader)

From Apache Arrow Home Page - https://arrow.apache.org/

Data Processing Evolution

Faster data access, less data movement

Hadoop Processing, Reading from disk

Faster Speeds, Real-World Benefits

CPU nodes (61 GiB memory, 8 vCPUs,

64-bit platform), Apache Spark

200GB CSV dataset; Data prep includes

joins, variable transformations

RAPIDS

5x DGX-1 on InfiniBand

network

Faster Speeds, Real-World Benefits

Improving Over Time

Benchmark

200GB CSV dataset; Data prep includes joins, variable transformations

CPU Cluster Configuration

CPU nodes (61 GiB memory, 8 vCPUs, 64-bit platform), Apache Spark

DGX Cluster Configuration

5x DGX-1 on InfiniBand network

Speed, Ease of Use, and Iteration

The Way to Win at Data Science

RAPIDS Core

Open Source Data Science Ecosystem Familiar Python APIs

RAPIDS End-to-End Accelerated GPU Data Science

Dask

RAPIDS Scaling RAPIDS with Dask

Why Dask?

PyData Native

- **Easy Migration:** Built on top of NumPy, Pandas Scikit-Learn, etc.
- Easy Training: With the same APIs
- **Trusted:** With the same developer community

Deployable

• **HPC:** SLURM, PBS, LSF, SGE

• Cloud: Kubernetes

• **Hadoop/Spark:** Yarn

Easy Scalability

- Easy to install and use on a laptop
- Scales out to thousand-node clusters

Popular

 Most common parallelism framework today in the PyData and SciPy community

Why OpenUCX? Bringing hardware accelerated communications to Dask

- TCP sockets are slow!
- UCX provides uniform access to transports (TCP, InfiniBand, shared memory, NVLink)
- Alpha Python bindings for UCX (ucx-py)
- Will provide best communication performance, to Dask based on available hardware on nodes/cluster

conda install -c conda-forge -c rapidsai \
 cudatoolkit=<CUDA version> ucx-proc=*=gpu ucx ucx-py

Benchmarks: Distributed cuDF Random Merge

cuDF v0.13, UCX-PY 0.13

Running on NVIDIA DGX-1 (8GPUs):

GPU: NVIDIA Tesla V100 32GB CPU: Intel(R) Xeon(R) CPU 8168 @ 2.70GHz

Benchmark Setup:

DataFrames: Left/Right 1x int64 column key column, 1x int64 value columns

Merge: inner

30% of matching data balanced across each partition

cuDF

RAPIDS

GPU-Accelerated ETL

The average data scientist spends 90+% of their time in ETL as opposed to training models

ETL Technology Stack

ETL: the Backbone of Data Science

libcuDF is...

CUDA C++ Library

- Table (dataframe) and column types and algorithms
- CUDA kernels for sorting, join, groupby, reductions, partitioning, elementwise operations, etc.
- Optimized GPU implementations for strings, timestamps, numeric types (more coming)
- Primitives for scalable distributed ETL

ETL: the Backbone of Data Science

cuDF is...

In [2]: #Read in the data. Notice how it decompresses as it reads the data into memory. gdf = cudf.read csv('/rapids/Data/black-friday.zip') In [3]: #Taking a look at the data. We use "to pandas()" to get the pretty printing. gdf.head().to pandas() Out[3]: User_ID | Product_ID | Gender | Age | Occupation | City_Category | Stay_In_Current_City_Years | Marital_Status | Product_Category | Pr | 0 | 1000001 | P00069042 | F 17 1000001 P00248942 F 17 2 1000001 P00087842 F 12 17 3 1000001 P00085442 F 17 4 1000002 P00285442 M 55+ 16 In [6]: #grabbing the first character of the years in city string to get rid of plus sign, and converting to int qdf['city years'] = qdf.Stay In Current City Years.str.qet(0).stoi() In [7]: #Here we can see how we can control what the value of our dummies with the replace method and turn qdf['City Category'] = qdf.City Category.str.replace('A', '1') gdf['City Category'] = gdf.City Category.str.replace('B', '2') gdf['City Category'] = gdf.City Category.str.replace('C', '3') gdf['City Category'] = gdf['City Category'].str.stoi()

Python Library

- A Python library for manipulating GPU DataFrames following the Pandas API
- Python interface to CUDA C++ library with additional functionality
- Creating GPU DataFrames from Numpy arrays, Pandas DataFrames, and PyArrow Tables
- JIT compilation of User-Defined Functions (UDFs) using Numba

Benchmarks: single-GPU Speedup vs. Pandas

cuDF v0.13, Pandas 0.25.3

Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB

CPU: Intel(R) Xeon(R) CPU E5-2698 v4

@ 2.20GHz

Benchmark Setup:

RMM Pool Allocator Enabled

DataFrames: 2x int32 columns key columns,

3x int32 value columns

Merge: inner

GroupBy: count, sum, min, max calculated

for each value column

ETL: the Backbone of Data Science

ETL: the Backbone of Data Science

String Support

Current v0.13 String Support

- Regular Expressions
- •Element-wise operations
 - Split, Find, Extract, Cat, Typecasting, etc...
- •String GroupBys, Joins, Sorting, etc.
- Categorical columns fully on GPU
- •Native String type in libcudf C++

Future v0.14+ String Support

- Further performance optimization
- JIT-compiled String UDFs

Extraction is the Cornerstone

cuDF I/O for Faster Data Loading

- Follow Pandas APIs and provide >10x speedup
- CSV Reader v0.2, CSV Writer v0.8
- Parquet Reader v0.7, Parquet Writer v0.12
- ORC Reader v0.7, ORC Writer v0.10
- JSON Reader v0.8
- Avro Reader v0.9
- GPU Direct Storage integration in progress for bypassing PCIe bottlenecks!
- Key is GPU-accelerating both parsing and decompression wherever possible

```
import pandas, cudf

import pandas.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))

CPU times: user 25.9 s, sys: 3.26 s, total: 29.2 s
Wall time: 29.2 s

12748986

3]: %time len(cudf.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))

CPU times: user 1.59 s, sys: 372 ms, total: 1.96 s
Wall time: 2.12 s

3]: 12748986

4]: !du -hs data/nyc/yellow_tripdata_2015-01.csv

1.9G data/nyc/yellow_tripdata_2015-01.csv
```

Source: Apache Crail blog: <u>SQL Performance</u>: Part 1 - Input File Formats

ETL is not just DataFrames!

RAPIDS Building bridges into the array ecosystem

Interoperability for the Win

DLPack and __cuda_array_interface__

ETL: Arrays and DataFrames

Dask and CUDA Python arrays

- Scales NumPy to distributed clusters
- Used in climate science, imaging, HPC analysis up to 100TB size
- Now seamlessly accelerated with GPUs

Benchmark: single-GPU CuPy vs NumPy

More details: https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

SVD Benchmark Dask and CuPy Doing Complex Workflows

Petabyte Scale Analytics with Dask and CuPy

Architecture	Time
Single CPU Core	2hr 39min
Forty CPU Cores	11min 30s
One GPU	1min 37s
Eight GPUs	19s

https://blog.dask.org/2019/01/03/dask-array-gpus-first-steps

3.2 PETABYTES IN LESS THAN 1 HOUR

Distributed GPU array | parallel reduction | using 76x GPUs

Array size	Wall Time (data creation + compute)
3.2 PB (20M x 20M doubles)	54 min 51 s

Cluster configuration: 20x GCP instances, each

instance has:

CPU: 1 VM socket (Intel Xeon CPU @ 2.30GHz), 2-core, 2 threads/core, 132GB mem, GbE ethernet, 950 GB disk

GPU: 4x NVIDIA Tesla P100-16GB-PCIe (total GPU

DRAM across nodes 1.22 TB)

Software: Ubuntu 18.04, RAPIDS 0.5.1, Dask=1.1.1, Dask-Distributed=1.1.1, CuPY=5.2.0, CUDA 10.0.130

cuML

Machine Learning

More models more problems

Problem

Data sizes continue to grow

Massive Dataset

ML Technology Stack

Algorithms GPU-accelerated Scikit-Learn

come!

Classification / Regression Inference Clustering Decomposition & Dimensionality Reduction Time Series

Decision Trees / Random Forests Linear Regression Logistic Regression K-Nearest Neighbors Support Vector Machines Random forest / GBDT inference K-Means DBSCAN Spectral Clustering **Principal Components** Singular Value Decomposition UMAP Spectral Embedding T-SNE **Holt-Winters** Seasonal ARIMA

Key:

- Preexisting
- NEW or enhanced for 0.13

RAPIDS matches common Python APIs

CPU-Based Clustering

from sklearn.datasets import make_moons import pandas

```
X, y = make_moons(n_samples=int(1e2),
noise=0.05, random_state=0)
```

```
from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)
```

dbscan.fit(X)

y_hat = dbscan.predict(X)

RAPIDS matches common Python APIs

GPU-Accelerated Clustering

```
from cuml import DBSCAN dbscan = DBSCAN(eps = 0.3, min_samples = 5) dbscan.fit(X)

y_hat = dbscan.predict(X)
```


Benchmarks: single-GPU cuML vs scikit-learn

Forest Inference

Taking models from training to production

cuML's Forest Inference Library accelerates prediction (inference) for random forests and boosted decision trees:

- Works with existing saved models (XGBoost, LightGBM, scikit-learn RF cuML RF soon)
- Lightweight Python API
- Single V100 GPU can infer up to 34x faster than XGBoost dual-CPU node
- Over 100 million forest inferences per sec (with 1000 trees) on a DGX-1 for large (sparse) or dense models

RAPIDS

- RAPIDS works closely with the XGBoost community to accelerate GBDTs on GPU
- The default rapids conda metapackage includes XGBoost
- XGBoost can seamlessly load data from cuDF dataframes and cuPy arrays
- Dask allows XGBoost to scale to arbitrary numbers of GPUs
- With the gpu_hist tree method, a single GPU can outpace 10s to 100s of CPUs
- Version 1.0 of XGBoost launched with the RAPIDS 0.13 stack.

XGBoost GPU Speedup - Single V100 vs Dual 20-core Xeon E5-2698

Road to 1.0

March 2020 - RAPIDS 0.13

cuML	Single CDU	Multi-GPU	Multi-Node-Multi-GPU
CUIVIL	Single-GPU	Multi-GPU	Multi-Node-Multi-GPO
Gradient Boosted Decision Trees (GBDT)			
Linear Regression			
Logistic Regression			
Random Forest			
K-Means			
K-NN			
DBSCAN			
UMAP			
Holt-Winters			
ARIMA			
t-SNE			
Principal Components			
Singular Value Decomposition			
SVM			

Road to 1.0 2020 - RAPIDS 1.0

cuML	Single-GPU	Multi-Node-Multi-GPU
Gradient Boosted Decision Trees (GBDT)	3	
Linear Regression (regularized)		
Logistic Regression		
Random Forest		
K-Means		
K-NN		
DBSCAN		
UMAP		
Holt-Winters		
ARIMA		
t-SNE		
Principal Components		
Singular Value Decomposition		
SVM		

cuGraph

Graph Analytics More connections more insights

Goals and Benefits of cuGraph

Focus on Features and User Experience

Breakthrough Performance

- Up to 500 million edges on a single 32GB GPU
- Multi-GPU support for scaling into the billions of edges

Multiple APIs

- Python: Familiar NetworkX-like API
- C/C++: lower-level granular control for application developers

Seamless Integration with cuDF and cuML

Property Graph support via DataFrames

Growing Functionality

 Extensive collection of algorithm, primitive, and utility functions

Algorithms Spectral Clustering **GPU-accelerated NetworkX** Balanced-Cut Modularity Maximization Louvain **Ensemble Clustering for Graphs** Subgraph Extraction Community KCore and KCore Number **Triangle Counting** K-Truss **Weakly Connected Components** Components **Strongly Connected Components** Page Rank (Multi-GPU) Link Analysis Personal Page Rank Jaccard Structure **Graph Classes Link Prediction** Weighted Jaccard Overlap Coefficient Multi-GPU Single Source Shortest Path (SSSP) **Traversal** Breadth First Search (BFS) Renumbering Utilities Katz Auto-renumbering Centrality **Betweenness Centrality** More to

come!

Multi-GPU PageRank Performance

PageRank portion of the HiBench benchmark suite

HiBench Scale	Vertices	Edges	CSV File (GB)	# of V100 GPUs	# of CPU Threads	PageRank for 3 Iterations (secs)
Huge	5,000,000	198,000,000	3	1		1.1
BigData	50,000,000	1,980,000,000	34	3		5.1
BigData x2	100,000,000	4,000,000,000	69	6		9.0
BigData x4	200,000,000	8,000,000,000	146	12		18.2
BigData x8	400,000,000	16,000,000,000	300	16		31.8
BigData x8	400,000,000	16,000,000,000	300		800*	5760*

^{*}BigData x8, 100x 8-vCPU nodes, Apache Spark GraphX \Rightarrow 96 mins!

Community

Ecosystem Partners

CONTRIBUTORS

ADOPTERS

OPEN SOURCE

Building on top of RAPIDS

A bigger, better, stronger ecosystem for all

Streamz

High-Performance Serverless event and data processing that utilizes RAPIDS for GPU Acceleration

GPU accelerated SQL engine built on top of **RAPIDS**

Distributed stream processing using **RAPIDS** and Dask

Easy Installation

Interactive Installation Guide

RAPIDS RELEASE SELECTOR RAPIDS is available as conda packages, docker images, and from source builds. Use the tool below to select your preferred method, packages, and r ☑ Preferred 1 Conda 🐸 Docker + Examples 🐡 Docker + Dev Env 🐡 Source 🕸 METHOD Nightly (0.14a) Stable (0.13) All Packages cuGraph cuxfilter PACKAGES cuDF cuML cuSignal cuSpatial Ubuntu 16.04 @ Ubuntu 18.04 @ CentOS 7 🏶 RHEL 7 🍮 Python 3.7 Python 3.6 CUDA 10.0 CUDA 10.1.2 CUDA 10.2 1 NOTE: Ubuntu 16.04/18.04 & CentOS 7 use the same conda install commands. COMMAND conda install -c rapidsai -c nvidia -c conda-forge \ -c defaults rapids=0.13 python=3.6 COPY COMMAND V

Contribute Back

Issues, feature requests, PRs, Blogs, Tutorials, Videos, QA...bring your best!

Getting Started

RAPIDS Docs

Improved and easier to use!

https://docs.rapids.ai

RAPIDS

How do I get the software?

- https://github.com/rapidsai
- https://anaconda.org/rapidsai/

- https://ngc.nvidia.com/registry/nvidia-rapidsai -rapidsai
- https://hub.docker.com/r/rapidsai/rapidsai/

THANK YOU

Nick Becker nicholas@nvidia.com

